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1. The concept of the PrISM Product 

The concept of the PrISM (Precipitation Inferred from Soil Moisture) product is to exploit remote 

sensing soil moisture measurements to correct for a satellite-based rainfall product. As soil moisture 

can be seen as the trace of the precipitation, some research teams in US, France and Italy started to 

develop various algorithms to retrieve rainfall from soil moisture measurements based on in-situ or 

satellite soil moisture measurements (Crow et al, 2007, 2009, Pellarin et al., 2009, 2013, Brocca et al. 

2013; 2014, Wanders et al. 2015, Zhan et al. 2015). The present methodology (PrISM) makes used of a 

simple land-surface model associated to an assimilation scheme (Particle Filter). The land-surface 

model is used to generate a first-guess soil moisture time-series based on a given satellite precipitation 

product. Then, this soil moisture time-series is compared to a satellite soil moisture product. The 

concept of the PrISM methodology is to exploit the difference between the two time-series by 

increasing or decreasing the amount of water of the original satellite precipitation product. The 

methodology is able to provide an unbiased real-time precipitation product based on the correction of 

a raw satellite-based precipitation product. 

In its present form, the PrISM product is proposed on the continental Africa for two main reasons. 

First, there is a significant need for precipitation measurements in Africa that are not provided by 

traditional ground-based measurement technics due to the absence of weather radars and the low 

density of the rain gauge network (about 1 rain gauge for 10 000 km²). Second, the identified 

limitations of the PrISM methodology were found to be related to snow cover and strong topography, 

land surface conditions not often encountered in Africa. 



This project was supported by CNES (TOSCA) and ESA (SMOS+Rainfall Project ESA/AO/1-7875/14/I-

NC). 

2. The API model 

The API (Antecedent Precipitation Index) model is based on a small modification of the original API 

model, presented in Pellarin et al. (2013). The original version of the API produces an index of the soil 

moisture expressed in mm. The new version of the API model contains two modifications: (i) it 

accounts for the degree of saturation of the soil before a rain event; and (ii) the soil moisture is now 

expressed in m3/m3. These modifications of the relationship add three parameters (dsoil : an equivalent 

soil thickness (in mm), θsat : the soil moisture value at saturation (in m3/m3) and θres the residual soil 

moisture (in m3/m3)). This simple model is expressed as follows:  

𝜃(𝑡) = (𝜃(𝑡−1) − 𝜃𝑟𝑒𝑠). 𝑒−
∆𝑡

𝜏 + (𝜃𝑠𝑎𝑡 − (𝜃(𝑡−1) − 𝜃𝑟𝑒𝑠)) . (1 − 𝑒
−𝑃(𝑡)

𝑑𝑠𝑜𝑖𝑙 ) + 𝜃𝑟𝑒𝑠  (Eq.1) 

where τ is the soil moisture drying-out velocity (in h), θ(t) is the surface soil moisture in m3/m3, and 

P(t) is the cumulative precipitation in mm during the Δt period. It is required to use a precipitation 

product at infra-daily resolution (3 hours or less) to determine when the rainfall occurs compared to 

SMOS ascending (6am) or descending (6pm) orbits. A sensitivity study was conducted over the 10 sites 

at the global scale (Román-Cascón et al., 2017) to derive the best 4 parameters of the API model. and 

showed that a constant value for θsat = 0.45 m3/m3 provided reliable results. On the contrary, it was 

shown that the τ and dsoil values have to be spatially and temporally defined (see section 0). 

3. The Particle Filter assimilation scheme 

The selected assimilation scheme is the Particle Filter (PF). The PF is an original method based on 

stochastic perturbations of the precipitation forcing that explicitly simulates the consequence of these 

uncertainties in the associated output, i.e., the soil moisture (Doucet et al., 2000;  Moradkhani et al., 

2005; Van Leeuwen, 2009). It is suitable for non-linear models and makes no assumptions on the prior 

and posterior distributions of the model states. This property of the PF makes it more suitable for this 

study compared to ensemble based data assimilation approaches whose optimality and performance 

depend on the linearity between input and output variables, having Gaussian distributed errors, as for 

example in the Ensemble Kalman Filter (Evensen, 2003; Reichle 2008). An illustration of the PF 

assimilation method is shown in Figure 1 (Niger site, 2015). 

 

Figure 1: Illustration of the PF assimilation scheme. The initial precipitation rate (in red) produces the 
associated soil moisture (in red). Stochastic perturbations of the initial precipitation product produce 
an ensemble of potential soil moisture evolutions (in grey). The SMOS measurements (diamonds) are 
used to select the most probable soil moisture curves (in orange) and to calculate the averaged soil 



moisture (in blue), which is associated with a specific precipitation rate (in blue). In this case, a 
decrease of the precipitation rate is proposed and is relevant with in situ precipitation measurements 

(in black). 

4.  Pre-Processing steps 

The methodology requires four preliminary successive steps: 

1. Select a reference precipitation product (we used the 2012 CMORPH-adjusted). 

2. Read the required parameters for the API model (τ(x,y,t), Hsoil(x,y), 𝜃𝑠𝑎𝑡 and 𝜃𝑟𝑒𝑠). These 

parameters were determined using in situ soil moisture measurements over 10 sites located 

in US, Europe, Africa and Australia (see section 1.4) 

3. Run the API model for 2012 year.  

4. Read the SMOS soil moisture measurements and their associated quality scores (RFI(x,y,t), 

Dqx(x,y,t), Chi2(x,y,t)) and calculate the two CDF-matching coefficient maps (p1(x,y) and 

p2(x,y)) to get unbiased SMOS measurements. This re-scaling step makes comparable the API 

soil moisture simulations and the SMOS soil moisture observations.  

 

 

Figure 2: Processing steps required to implement the PrISM algorithm. The upper part of the chart is 
common to all satellite soil moisture products. The lower part of the chart (CDF-matching coefficient 
calculation) depends on the selected soil moisture product (SMOS-L3SM or SMOS-IC in this example).   

 

5. PrISM algorithm 

The PrISM algorithm is illustrated in Figure 3 and can be described as followed. When a SMOS 

measurement is available on a given pixel, the PrISM method determines an assimilation period fixed 

to 5 SMOS measurements (~4-6 preceding days). Then, a stochastic perturbations (100) of the original 

precipitation forcing is performed at the rain event time-scale. The API model (Eq. 1) simulates the 100 



potential soil moisture trajectories. The re-scaled SMOS measurements (diamonds in Figure 3) are used 

to select the most probable soil moisture trajectories (in orange, lower RMSE scores) and calculate the 

averaged soil moisture (in blue), which is associated with a specific precipitation rate (in blue). On the 

first graph of Figure 3a, it can be observed that the original rainfall event (in red) is overestimated in 

comparison with in situ rainfall measurements (in black). However, at this stage, an increase of the 

rainfall rate is proposed by the PrIMS algorithm (in blue). The process is repeated when a new SMOS 

measurement is available (Figure 3b). Here, the PrIMS algorithm revises downward the proposed 

rainfall rate for the same event due to a new SMOS soil moisture measurement. The same process is 

repeated for the next two SMOS measurements as shown in Figure 3c and Figure 3d. At the end, each 

rainfall event is observed 4 times (a period of 5 successive SMOS measurements provides 4 intervals) 

and the final rainfall rate correction is the average value of the 4 proposed rainfall rate. At the end of 

the process, for the specific rainfall event of 11-12 September 2015 in Niger, the in situ rainfall amount 

was 15 mm whereas the original rainfall was 29 mm (CMORPH-Raw) and the PrISM rainfall was 

evaluated to 22 mm.  

 

Figure 3: PrISM successive assimilation steps to derive a rainfall estimation. When a SMOS 
measurement is available, the PrISM method considers the preceding period (fixed to 5 SMOS 

measurements, ~4-6 days), and the algorithm select the best precipitation modification that minimize 
the RMSE between SMOS (measurements) and API (simulations) soil moisture.  

 

6. Evaluation at the local scale 

The spatial resolution of the PrISM product is fixed by the precipitation product to be corrected (0.25° 

for CMORPH, TRMM and PERSIANN). At this scale, a comparison of the PrISM product with a single 

raingauge station at the ground level might be biased or inaccurate. Thus, we used two AMMA-CATCH 

observatory sites located in Niger and in Benin which contains two high density raingauge networks 

composed (depending on years) between 4 to 24 raingauge stations over the two 0.25° considered 

pixels. The center coordinates of the two areas are: 13.625°N; 2.625°E (Niger) and 9.625°N; 1.625°E 



(Benin). On the two sites, a block-krigging technique was carried out using all raingages in the 

neighborhood of the 0.25° area. It results a rainfall value obtained every 3 hours on the 0.25° x 0.25° 

area. 

A first evaluation of the PrISM product was done on the cumulative annual rainfall for the Niger and 

Benin sites from 2010 to 2016. Figure 4 shows the cumulative annual rainfall estimates from (i) in situ 

measurements, (ii) the PrISM product, (iii) the CMORPH-Raw and CMORPH-Adj products and (iv) the 

GPCC product. Note that the four first products are 0.25° spatial resolution whereas the GPCC product 

is a 1° resolution product. The addition of the GPCC product in this section is useful to understand the 

next section (regional scale evaluation). Results presented in Figure 4 show that the PrISM product 

provides accurate cumulative rainfall close to the reference product and always better values that the 

CMORPH-Raw product. Compared to CMORPH-Adj, which use ground stations to remove the bias at a 

monthly timescale, the PrISM product provides better cumulative annual rainfall each year in Benin, 

and 4 years out of 7 in Niger. The mean annual absolute difference in Benin is 62 mm/year with the 

PrISM product whereas it is 228 mm/year with CMORPH-Adj product (and 392 mm/year with 

CMORPH-Raw). In Niger, the mean annual absolute difference is 69 mm/year with the PrISM product 

and 68 mm/year (slightly better) with the CMORPH-Adj product (and 295 mm/year with CMORPH-

Raw). Globally, the PrISM product provides better results than GPCC except in 2011 and 2014 in Niger 

and in 2013 in Benin.   

 

  
Figure 4: Annual cumulative rainfall from 2010 to 2016 in Niger (left graph) and Benin (right graph) 

estimated with in situ raingages (black dotted curve), CMORPH-Raw and CMORPH-Adj products (blue 

curves, triangle), the PrISM product (red curves) and GPCC product (grey curves, square). 

 

The PrISM product was also assessed using the correlation (R²) and RMSE scores. Figure 5 shows the 

correlation between in situ rainfall (daily timestep) and four products (PrISM, CMORPH-Raw, CMORPH-

Adj and GPCC). The PrIMS product improves the correlation scores of the original rainfall product 

(CMORPH-Raw, here) for 100% of the years on the two sites. More remarkable, the performances of 

the PrISM product surpasses the CMORPH-Adj product except for one year in Niger (2013). The low 

correlation scores of the GPCC product are probably due to the different spatial resolution (1° vs. 

0.25°), but also to the low spatial variability of this product based exclusively on in situ rainfall network 

which is known to be sparse in Africa. Similarly, Figure 6 shows the root-mean-square-error (RMSE) 

scores between in situ rainfall (daily timestep) and the four products. Here again, the PrIMS product 

srongly improves the RMSE scores of the original rainfall product (CMORPH-Raw) for 100% of the years 

on the two sites. When comparing with the CMORPH-Adj product, the PrISM product provides better 

RMSE scores except in one year in Benin (2016). 



  
 

Figure 5: Annual correlation (R², daily timestep) between in situ raingages vs. (i) CMORPH-Raw and 

CMORPH-Adj products (blue curves), (ii) vs PrISM product (red curves) and (iii) GPCC. Niger 0.25° pixel 

(left) and Benin 0.25° pixel (right) 

 

  
 

Figure 6: RMS error (mm/day) between in situ raingages vs. (i) CMORPH-Raw and CMORPH-Adj 

products (blue curves), (ii) vs PrISM product (red curves) and (iii) GPCC. Niger 0.25° pixel (left) and 

Benin 0.25° pixel (right) 

 

7. Evaluation at the regional scale (2015) 

The PrISM product was also assessed at the regional scale using GPCC as a reference product. The 

relevance of the GPCC product as a reference product can be discussed regarding the previous section 

(1.5) but this product is frequently used for satellite product evaluations and is considered as one of 

the best precipitation product.  

Similarly to previous section, the correlation, the RMSE and the cumulative annual rainfall were 

calculated and compared to GPCC product. Figure 7 shows the RMSE score (mm/day) for CMORPH-

Raw and PrISM products (two first graphs), and the potential improvement/worsening of the PrISM 

product compared to the CMORPH-Raw product. The two first graphs of Figure 7 shows that larger 

errors are located in the central part of Africa but this is mostly due to large rainfall amounts in this 

region compared to northern and southern African regions. The right graph presents the locations 

where the PrISM product provides better (in blue) or lower (in red) RMSE scores compared to 

CMORPH-Raw product. In 94% of the pixels, the PrISM product improves the CMORPH-Raw product.  

 



   

  
Figure 7: (left) RMSE (mm/day) between GPCC and CMORPH-Raw product, (middle) RMSE between 

GPCC and PrIMS product and (right) improvement (blue) or worsening (red) of the RMSE score from 

CMORPH-Raw product to PrISM product. 

 

Similar analysis was done with the correlation score (R²) in Figure 8. The low values of R² of the two 

first graphs are mainly due to the uncertain correlation score of the GPCC product compared to in situ 

rainfall (shown in previous section in two sites). Despite this, it can be observed that the PrISM product 

improve the correlation on 73% of the pixels. 

   

  
 

Figure 8: (a) Coefficient of determination (R²) between daily GPCC and daily CMORPH-Raw products, 

(b) R² between GPCC and the PrISM product and (c) improvement (blue) or worsening (red) of the 

CMORPH-Raw product compared to GPCC. 

 

Finally, the performance of the PrISM product was evaluated against cumulative annual rainfall. The 

left graph of  

Figure 9 shows that the CMORPH-Raw product tends to overestimate rainfall (blue pixels) on most of 

Africa (except East Africa, Madagascar, Gabon and Liberia). This middle graph shows the annual 

difference of the PrISM product compared to GPCC. It can be observed that white and light pixels are 

more frequent which means that the absolute difference (between PrISM and GPCC) is lower (than 

CMORPH-Raw). The right graph shows the pixel where the PrISM product provides better (in blue) or 

lower (in red) RMSE scores compared to CMORPH-Raw product. In 63% of the pixels, the PrISM product 



improves the CMORPH-Raw product. Regions where the PrISM product seems to be in difficulty are 

located in highly dense forest (Liberia, Southern Nigeria, Gabon, Cameroun), and in various locations 

in East and South Africa. However, the GPCC product is probably not very accurate in these regions as 

the number of stations used by GPCC are close to zero as shown in Figure 10. Further investigation in 

these forested regions are on-going. 

 

   
  

 

Figure 9: Over (blue) and under (red) estimation of the cumulative annual rainfall compared to GPCC. 

Left graph refers to CMORPH-Raw, middle graph to PrISM. The right graph shows where the PrISM 

product is better than CMORPH-Raw (blue) compared to the GPCC annual rainfall and, respectively 

where the PrISM product is lower (red pixels). Globally, over 63% of the area, the PrISM product 

provides better annual rainfall than CMORPH-Raw product.   

 

 

Figure 10: Number of stations used by GPCC for May 2012.  
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ANNEX 1 : PrISM’s parameters estimation 

 

a) Seasonal variation of Tau parameter 

In the API model (Eq.1), the Tau parameter (τ) describes the drying-out velocity of the surface soil 

moisture due to both evapotranspiration and infiltration rate. Consequently, the value of this 

parameter should mainly depends on atmospheric forcing (air temperature, wind velocity, solar 

radiation) and on the soil hydraulic properties. In a first approximation, it was shown that the τ value 

can be appropriately estimated only with 30-days smoothed air temperature (Tair) using the following 

relationship: 

𝜏(𝑡) = 400 − (
350

(1+𝑒−0.1(𝑇𝑎𝑖𝑟−7.5))
)     (Eq. 2) 

 

where Tair values (°C) are the 30-days smoothed obtained from the MERRA-2 database (3-hours). Figure 

11 presents the spatial distribution of the annual mean Tau values in Africa and two local examples of 

temporal variability in Niger and South Africa. 

 

 

Figure 11: Annual mean Tau coefficient (in hours) and examples on two selected pixels. Low Tau 
values (e.g. 80 h) refers to a rapid decrease of the soil moisture, whereas high Tau values (up to 400 

h) refers to a slow decrease of the soil moisture. 

 



b) Residual soil moisture 𝜃𝑟𝑒𝑠 and hsoil coefficient maps 

The residual soil moisture is the minimal value of soil moisture on a given pixel. Similarly to Tau values, 

this parameter was determined from residual soil moisture observed at 10 site locations and was found 

to be related to the presence of vegetation and the air temperature. The formulation can be written 

as: 

𝜃𝑟𝑒𝑠 = 0.04676 + 0.05936 (𝑁𝐷𝑉𝐼̅̅ ̅̅ ̅̅ ̅̅ ) − 0.00136 (𝑇𝑎𝑖𝑟̅̅ ̅̅ ̅̅ )    (Eq.3) 

 

with 𝑇𝑎𝑖𝑟̅̅ ̅̅ ̅̅  (in °C) is the annual mean 2m air temperature (source MERRA) and 𝑁𝐷𝑉𝐼̅̅ ̅̅ ̅̅ ̅̅  is the annual mean 

NDVI value provided by ESA-CCI-LC-L4-NDVI (Spot VGT). The 𝜃𝑟𝑒𝑠 map is shown in Figure 12. 

The hsoil coefficient (in mm) describes the rapidity of the soil moisture increase during a rainfall event. 

Over 9 out of 10 sites, a hsoil value of 50 mm was found to be adequate compared to in situ soil moisture 

dynamic. However, on the Niger site, a value of hsoil equal to 100 mm was required to represent the in 

situ soil moisture dynamic. It was concluded that this parameter can be related to the 

presence/absence of vegetation. In regions without vegetation, soils are often degraded with an 

impermeable crust associated with a low infiltration rate. A simple relationship based on mean annual 

NDVI (ESA-CCI-LC-L4-NDVI) was proposed as : 

ℎ𝑠𝑜𝑖𝑙 = 120 −
80

1+178482301𝑒(−100∗𝑁𝐷𝑉𝐼̅̅ ̅̅ ̅̅ ̅̅ ̅)     (Eq.4) 

 

Globally, dsoil values range from 40 mm (almost everywhere) to 120 mm in arid and semi-arid areas (cf. 

Figure 12). 

  
 

Figure 12: Spatial distribution of (i) residual soil moisture (𝜃𝑟𝑒𝑠) and (ii) soil depth (hsoil) 

 



c) SMOS CDF-matching coefficients 

The CMORPH-Adj reference precipitation products was used to provide a reference soil moisture 

simulation (2012) with the API model at the African scale. Based on this soil moisture simulation, a 

calculation of the CDF-matching coefficients (p1 and p2) was made to scale the SMOS L3SM to the 

reference soil moisture. The scaled SMOS values (SMOSCDF) are assumed to be linearly related to SMOS 

original values as: 

𝑆𝑀𝑂𝑆𝐶𝐷𝐹 = 𝑝1 + 𝑝2. (𝑆𝑀𝑂𝑆)     (Eq.5) 

 

with         𝑝2 =
𝜎𝑆𝑀𝑚𝑜𝑑𝑒𝑙

𝜎𝑆𝑀𝑠𝑚𝑜𝑠
⁄       and    𝑝1 = 𝑆𝑀𝑚𝑜𝑑𝑒𝑙

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑝2. (𝑆𝑀𝑠𝑚𝑜𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) 

 

Figure 13 shows the two CDF-matching coefficient maps (p1 and p2) derived from reference soil 

moisture simulation (based on a reference precipitation product, here CMORPH-Adj) and SMOS 

measurements. A sensitivity study was done and revealed a strong temporal steadiness of these two 

maps.  

  
 

Figure 13: CDF-matching coefficients (p1(x,y) and p2(x,y) derived from reference soil moisture 
simulation (based on an Adjusted precipitation product (here CMORPH-Adj 2012)) and SMOS-L3SM 

CATDS product. 

The CDF-matching coefficients are calculated to remove the bias between SMOS and the reference soil 

moisture simulation. This step is important to get unbiased SMOS soil moisture estimates as closed as 

possible to the reference API simulated soil moisture so that the correction of the precipitation can 

work suitably.  



ANNEX 2 : Potential of the PrISM methodology 

The potential of the PrISM methodology depends on the consistency of two signals: the dynamic of 

the SMOS signal and the dynamic of the API soil moisture simulation. It is possible to map the 

correlation between these two signals as shown in Figure 14. The correlation ranges between almost 

zero (in the Sahara desert and Central Africa) to about R²=0.7 in Sahelian regions and Southern Africa. 

The low correlation in the Sahara desert is due to the weak variation of the two signals (almost no 

precipitation). In Central Africa, the presence of dense vegetation increases the uncertainty of the 

SMOS soil moisture estimates. To better illustrate the covariance of the two signals, four pixels are 

illustrated in Figure 15 (a, b, c, d). 

 

Figure 14: Annual correlation (R²) between API soil moisture simulation (based on CMORPH-Adj) and 
SMOS-L3SM soil moisture product. 

 



 

Figure 15a: (Top) Annual variations of SMOS soil moisture estimates and API soil moisture simulation 
based on CMORPH-Adj rainfall product in Latitude=12.62N; longitude=5.12E (Northern Nigeria, pixel 
(a) in Figure 14). (Bottom) same with unbiased SMOS signal after the CDF-matching procedure. The 

two right graphs show the soil moisture distribution of SMOS and API model. 

 

 

Figure 14b: (Top) Annual variations of SMOS soil moisture estimates and API soil moisture simulation 
based on CMORPH-Adj rainfall product in Latitude=10.12N; longitude=0.12E (Northern Ghana, pixel 
(b) in Figure 14). (Bottom) same with unbiased SMOS signal after the CDF-matching procedure. The 

two right graphs show the soil moisture distribution of SMOS and API model. 

 



 

Figure 14c: (Top) Annual variations of SMOS soil moisture estimates and API soil moisture simulation 
based on CMORPH-Adj rainfall product in Latitude=2.62N; longitude=45.12E (Somalia, pixel (c) in 
Figure 14). (Bottom) same with unbiased SMOS signal after the CDF-matching procedure. The two 

right graphs show the soil moisture distribution of SMOS and API model. 

 

Figure 14d: (Top) Annual variations of SMOS soil moisture estimates and API soil moisture simulation 
based on CMORPH-Adj rainfall product in Latitude=0.12N; longitude=25.12E (Democratic republic of 

Congo, pixel (d) in Figure 14). (Bottom) same with unbiased SMOS signal after the CDF-matching 
procedure. The two right graphs show the soil moisture distribution of SMOS and API model. 

The four examples shown in Figure 15 (a, b, c, d) gives an overview of various situations. The first one 

(Sahelian case) is particularly favorable to the PrISM methodology: high correlation score between 

SMOS and API soil moisture (R²=0.70) and almost perfect match in term of soil moisture distribution 

after the CDF-matching procedure (bottom right graph, RMS=4.9 % vol.). The second case (Ghana, 

Figure 15b) presents similar behavior (R²=0.64) and perfect match of the soil moisture distribution 



(RMS=3.6% vol.). The third case (Somalia, Figure 15c) presents a relatively weak correlation (R²=0.27) 

due to a high noise signal during dry periods, and a large mismatch in the soil moisture distribution 

(RMS>10 % vol.). Finally, the fourth case (Central Africa forest) shows a very low correlation (R²=0.003) 

but a relatively good soil moisture distribution (RMS=4.7 % vol.).  

 

ANNEX 3 : Files structure 

The files are in netcdf format. The structure is given below (ncdump –h UNIX function) 

dimensions: 

 latitude = 297 ; 

 longitude = 285 ; 

 time = 2920 ; 

variables: 

 float latitude(latitude) ; 

  latitude:long_name = "latitude" ; 

  latitude:standard_name = "latitude" ; 

  latitude:units = "degrees_north" ; 

  latitude:axis = "Y" ; 

 float longitude(longitude) ; 

  longitude:long_name = "longitude" ; 

  longitude:standard_name = "longitude" ; 

  longitude:units = "degrees_east" ; 

  longitude:axis = "X" ; 

 float rainfall(time, latitude, longitude) ; 

  rainfall:long_name = "Precipitation amount" ; 

  rainfall:units = "mm" ; 

  rainfall:_FillValue = -9999.f ; 

  rainfall:valid_max = 110.7814f ; 

  rainfall:valid_min = 0.f ; 

 float rainfall_error(time, latitude, longitude) ; 

  rainfall_error:long_name = "Precipitation amount error" ; 

  rainfall_error:units = "mm" ; 

  rainfall_error:_FillValue = -9999.f ; 

  rainfall_error:valid_max = 7387.573f ; 

  rainfall_error:valid_min = 0.f ; 

 int time(time) ; 

  time:long_name = "time" ; 

  time:standard_name = "time" ; 

  time:units = "seconds since 1970-01-01 00:00:00 utc" ; 

 

// global attributes: 

  :Conventions = "CF-1.5" ; 

  :title = "Rainfall amount 0.25 x 0.25 degrees / 3 h, from Pellarin et 

al 2013 algorithm with SMOS assimilation (Particle Filter)" ; 

  :institution = "IGE (Institut des Geosciences de l Environnement), 

Grenoble, FRANCE" ; 

  :history = "Tue Mar  6 16:22:54 2018" ; 

  :Configuration1 = "CDF-Matching coefficient (p1,p2) obtained on 2012 

(CMORPH-Adj)" ; 

  :Configuration2 = "RFI and DQX thresholds are 0.4, 0.05" ; 

  :Configuration3 = "Initial precipitation product : CMORPH-Raw (0.25deg, 

3h)" ; 

  :references = "Roman-Cascon, C., Pellarin, T., Gibon, F., Brocca, L., 

Cosme, E., Crow, W., Fernandez, D., Kerr, Y. and Massari, C. Correcting satellite-

based precipitation products through SMOS soil moisture data assimilation in two land-

surface models of different complexity: API and SURFEX, Remote Sensing of Environment, 

200 (2017) 295.310" ; 

 


