

DESCRIPTION

SMOS team

Issue: 4a Date: 2021/03/09 - Soil Moisture and Brightness Temperature -

Page 1/33

Technical Note CATDS LEVEL 3 DATA PRODUCT DESCRIPTION

- Soil Moisture and Brightness Temperature -

Project code SO-TN-CB-CA-0001

Version 4a

Date 2021/03/09

	Role	<u>Name</u>	Date and
			signatures
Written by:	Project engineer	L. Berthon	
	Project engineer		
	Project engineer		
	Lead investigator		
Approved by:			
Approved by:			

CATDS LEVEL 3 DATA PRODUCT DESCRIPTION

- Soil Moisture and Brightness Temperature -

SMOS team

Issue : 4a Date : 2021/03/09

Page 2 /33

DOCUMENT STATUS SHEET

Version /Rev.	Date	Pages	Changes	Visa
Draft	10/11/2011		First draft	
1a	16/04/2012		Final report v2.44	
			Major update	
1b	24/10/2012		Modifications of the path in the ftp website	
			(§ where to find the products)	
			v2.48	
1c	23/03/13		Replacement of "P11p", "P1", etc.	
			by "daily products", "3-day products", etc.	
			v2.52	
			Update with v2.52: Addition of 2 new fields in the	
			daily product (M_Ava0 and Rfi_Prob)	
2a	24/04/13		UDP part removed as no more distributed	
			v2.52	
2b	11/09/14		Add table 3 science flag	
2c	12/09/14		Ease Grid2, V2.7.2	
3	03/03/21		Update L3TB, new reprocessing RE07	
4a	21/07/21		Add simplified SM + Update SM new reprocessing RE07	

CATDS LEVEL 3 DATA PRODUCT DESCRIPTION

SMOS team

Issue : 4a Date : 2021/03/09 $\hbox{\bf - Soil Moisture and Brightness Temperature -}\\$

Page 3 /33

DISTRIBUTION LIST

ESTEC/EEM:	

ESRIN:		
EGTEG		
ESTEC:		

CNES:		
Vandermarcq		
Olivier		
SAG:		
IFREMER:		
Tarot S.		

CATDS LEVEL 3 DATA PRODUCT DESCRIPTION

- Soil Moisture and Brightness Temperature -

SMOS team

Issue : 4a Date : 2021/03/09

Page 4 /33

RD 1 Algorithm Theoretical Baseline Document L3 SM: ATBD CATDS SM L3 SO-TN-CBSA-GS-0029

RD 2 Algorithm Theoretical Baseline Document L2 SM: SM ATBD SO-TN-ESL-SM-GS-0001(3.h)

RD 3 Data Processing Model SM PC2: CAT-DPM-CTSM-00013-CG_13

RD 4 Data Processing Model SM L3TB: CAT-DPM-CTL3TB-00061-CG

RD 5 Spécification Logicielle: CAT-SL-CT-00009-CG_10

RD 6 SMOS Level 1 and Auxiliary Data Products Specifications: SO-TN-IDR-GS-0005

CATDS LEVEL 3 DATA PRODUCT DESCRIPTION

- Soil Moisture and Brightness Temperature -

SMOS team

Issue : 4a Date : 2021/03/09

Page 5 /33

ACRONYMS

ADF Auxiliary Data File

ATBD Algorithm Theoretical Baseline Document

CATDS Centre Aval de Traitement des Données SMOS

CESBIO Centre d'Etudes Spatiales de la BiosphÃ"re

CCFSMF Processor Configuration parameters for L2 Soil Moisture, full polarisation

DPM Data Processing Model
DQX Data Quality Index

EASE Equal-Area Scalable Earth Grid

ECMWF European Centre for Medium-range Weather Forecasting

FL Flag

LSB / MSB Lowest / Most Significant Bit *

MD Cardioid Model

RFI Radiometric Frequency Interference

SM Soil Moisture

SMOS Soil Moisture and Ocean Salinity
Tau Vegetation Optical thickness
TB/BT Brightness Temperature
TEC Total Electron Content

Contents

1	INT	RODUCTION	7
2	LEV	VEL 3 BRIGHTNESS TEMPERATURE PRODUCT - L3TB	9
	2.1	Product Description	9
	2.2	Naming Convention	9
	2.3	Where to find these products	9
	2.4	Product content	10
3	SIM	IPLIFIED DAILY SOIL MOISTURE	11
	3.1	Product Description	11
	3.2	Naming Convention	11
	3.3	Where to find these products	12
	3.4	Product content	12
4	DAI	ILY SOIL MOISTURE	16
-	4.1	Product Description	16
	4.2	Naming Convention	16
	4.3	Where to find these products	16
	4.4	Product content	17
5	2 D	AY SM-VOD PRODUCT	20
3			20
	5.1 5.2	Product Description	20
	5.2		20
	5.3 5.4	Where to find these products Product content	20
	3.4	Product content	21
6	3-D	AY DIELECTRIC CONSTANT PRODUCT	23
	6.1	Product Description	23
	6.2	Naming Convention	23
	6.3	Where to find these products	23
	6.4	Product content	24
7	10-I	DAY PRODUCT	26
-	7.1	Product Description	26
	7.2	Naming Convention	26
	7.3	Where to find these products	26
	7.4	Product content	27
O	MO		20
8	_	NTHLY PRODUCT	29
	8.1	Product Description	29
	8.2	Naming Convention	29
	8.3	Where to find these products	29
	8.4	<u>Product content</u>	30
9	Desc	cription of FLAGS	32
	9.1	Grid_Point_Mask	32

1 INTRODUCTION

The ESA's (European Space Agency) SMOS (Soil Moisture and Ocean Salinity) mission, operating since November 2009, is the first satellite dedicated to measuring surface soil moisture and ocean salinity. The CNES (Centre National d'Etudes Spatiales) has developed a ground segment for the SMOS data, known as the CATDS (Centre Aval de Traitement des Données SMOS). Operational since June 2011, it provides data referred to as level 3 products at different temporal resolutions: daily products (see Figure 1), 3 day global products insuring a complete coverage of the Earth surface, 10-day composite products, and monthly averaged products. For each day, there are at most 15 ascending (respectively descending) half-orbits. It always corresponds to the local equator crossing solar time 6:00 am (resp. 6:00 pm).

Like the AMSR-E L3 data, these products are presented in the NetCDF format on the EASE (Equal Area Scalable Earth) grid version 2 with a \sim 25 km cylindrical projection. On equal-area maps, the grid is changing with latitude: a circle placed anywhere on the map always covers the same area on the globe (here 625 km²), and the product of the scale h along a meridian and the scale k along a parallel is always equal to one. Its dimension, i.e. the aspect ratio k/h measures the distortion of the shape. The global EASE grid is characterized by h=k at a latitude of +/-30°. It insures a minimum mean angular distortion over continents. For more information on the EASE grid see the ATBD L3SM [1]. An inversion algorithm is applied to the set of the brightness temperatures from global daily L1C product. This processing is an iterative scheme performed in order to minimize a quadratic cost function. It is exactly derived from the L2 SM algorithm in the principles. The major enhancement at CATDS concerns the use of multi-orbit retrieval: several revisits are taken into account simultaneously, one chosen in the three days before the reference day and another in the three days after.

ABOUT THE PRODUCTS

There are seven different types of Level 3 products distributed: the Brightness Temperature product (named L3TB), the one day global map of soil moisture values (named daily products), the global soil moisture products, 3-day global map (named 3-day products for Surface Soil Moisture), the dielectric constant products, 3-day global map (named 3-day products for Dielectric Constant), the global soil moisture products, 10-day global map (named 10-day products), and the global soil moisture products, monthly global map (named monthly products).

WHERE TO FIND THE PRODUCTS

All the products can be found on the CATDS website (http://catds.fr), in an organisation depending on the type of product. The Level 3 Brightness Temperature, the daily products and all the aggregated products (3-day, 10-day and monthly products) are stored following the organisation shown on figures 2 to 8.

FTP access

The CATDS-CPDC products are freely available on FTP:

ftp ftp.ifremer.fr user: ext-catds-cpdc password: catds2010

or

ftp://ext-catds-cpdc:catds2010@ftp.ifremer.fr/

VERSION OF THE PRODUCTS

There are several changes in the products for each update of the version, some have minor impacts, some have more important ones. This document will be updated accordingly.

This document is written for the V330 We strongly recommend to use the last set of reprocessed data which are in the folder "RE07" on the CATDS website.

e.g: $SM_OPER_MIR_CLF3MD_220130201T000000_20130228T235959_330_001_7$ in this product, the version of the processor is V330.

Overview

Maps of the various products can be seen here: https://maps.catds.fr/

2 LEVEL 3 BRIGHTNESS TEMPERATURE PRODUCT - L3TB

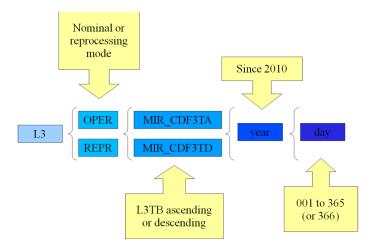
2.1 Product Description

The Level 3 Brightness Temperature product is a daily global polarised brightness temperature product, arranged by incidence angle values, in full polarisation. It includes all brightness temperatures acquired that day, transformed to ground polarisation reference frame (H and V polarisation), binned (5^o) and averaged into fixed angle classes. Bin 9 corresponds to SMAP incidence angle (40^o +/- 2^o), bin 15 is a place holder for the time being. Ascending and descending orbits are processed separately and only in full polarisation.

2.2 Naming Convention

All the files are named as follows:

"SM_OPER_MIR_CDF3Tx_yyyymmddThhmmss_YYYYMMDDTHHMMSS_vvv_ccc_n", where the conventions are very close to those of SMOS Level 2.


Table 1: Naming Description of the L3 Brightness Temperatures Product

SM	in this specific case, it stands for the SMOS mission	
OPER	file class: indicates whether the data is produced in a nominal or a	
REPR	reprocessing mode	
MIR	file category: MIRAS, as the name of the instrument	
CDF3Tx	C = CATDS	
	D = for daily nominal product	
	F = for full polarisation	
	3T = Level 3 Brightness Temperature Products	
	x = "A" for ascending orbit and "D" for descending orbit	
yyyymmddThhmmss	sensing start time for the data contained in the product	
	With yyyy year	
	mm month	
	dd day of the month	
	hh hour	
	mm minutes	
	ss seconds	
VVV	version number of the processor generating the product	
ccc	file counter, used to make distinction among products having all other	
	filename identifiers identical: the higher the file counter, the more	
	recent the product	
n	processing site (C-PDC=7, C-EC SM=8, C-EC OS=9)	

2.3 Where to find these products

These products can be found on the CATDS website (http://catds.fr), ftp://ext-catds-cpdc:catds2010@ftp.ifremer.fr/ organised as follows:

SM/GRIDDED/L3/OPER/product type/year/day of the year, where product type can be MIR_CDF3TA or MIR_CDF3TD depending on orbits type, and day of the year is between 001 (1st January) and 365/366 (31st December).

2.4 Product content

Table 2: Content of the L3 Brightness Temperatures Product

Variable Name	Description
lat and lon	Geographic coordinates: Vectors of latitudes
	and longitudes (in degree) of the grid point.
	The dimensions of "lat" and "lon" are 584x1 and
	1388x1 respectively, corresponding to the
	584x1388 nodes of the EASE version 2, 25km
	cylindrical grid.
inc and dinc	Centre (inc) and width (dinc) of each class of angle
	in degree
	Their dimensions are 15x1
The 2 following	parameters are presented as a 584x1388 matrix
X_Swath	Abscissa of the dwell line (in km): The sign of the
71_5 watii	value is relative to the direction of the satellite. It is
	positive if it is to the right and negative if it is to the
	left of the satellite subtrack
Grid_Point_Mask	Flag indicating land/sea USGS content, coastline
0110_1 01110_1/14011	distance, and Ice content.
	See at the end of the document for a complete
	description of this flag
All the followin	ng parameters have 3 dimensions: 15x584x1388
BT_H, BT_V	Averaged brightness temperature (in Kelvin) by
BT_3, BT_4	angle class in H-pol, V-pol, 3rd Stokes parameter
- / -	and 4th Stokes parameter respectively, over current
	Earth fixed grid point, obtained by rotating the L1c
	data
Pixel_Radiometric_Accuracy_H	Error accuracy measurement (in Kelvin) associated
Pixel_Radiometric_Accuracy_V	to the averaged brightness temperature by class of
Pixel_Radiometric_Accuracy_3	angle presented in the previous field, extracted in
	Continued on next page

Pixel_Radiometric_Accuracy_4 the direction of the pixel.

Pixel_BT_Standard_Deviation_H Brightness temperature standard deviation (in

Pixel_BT_Standard_Deviation_V Kelvin) by class of angle.

Pixel_BT_Standard_Deviation_3 Pixel_BT_Standard_Deviation_4

Incidence_Angle Incidence angle value (in degree) by class of angle

corresponding to the measured BT values over

current Earth fixed grid point

Azimuth_Angle Azimuth angle value (in degree) by class of angle

corresponding to the measured brightness temperature value over current Earth fixed grid

point

Footprint_Axis1 Elliptical averaged footprint major (and minor Footprint_Axis2 respectively) semi-axis value by class of angle.

Averaged direction cosine for Xi and Eta,

respectively, by angle class

Xi and Eta Xi and Eta referred to the antenna frame

Nviews Number of brightness temperature views used to

compute angle class averages.

Days Measurement acquisition time in UTC at which UTC_Seconds the averaged brightness temperature was taken UTC Microseconds Day count begins on the 1st of January 2000

seconds and microseconds are relative to the current day in UTC

Nb RFI Flags Number of views flagged as

potentially contaminated by RFI

Nb_SUN_Flags Number of views flagged as

contaminated by the sun

3 SIMPLIFIED DAILY SOIL MOISTURE

3.1 Product Description

The S simplified daily product, is a lighter version of the daily product with 2 new fields that are the number of TB used to perform the retrieval and the RFI

3.2 Naming Convention

All the files are named as follows:

"SM_OPER_MIR_CLF3Sx_yyyymmddThhmmss_YYYYMMDDTHHMMSS_vvv_ccc_n", where the conventions are very close to those of SMOS Level 2.

Table 3: Naming Description of the Daily SM-VOD Product

Tuote of Tuoting Description of the During State of Toute			
SM	in this specific case, it stands for the SMOS mission		
OPER	file class: indicates whether the data is produced in a nominal or a		
REPR	reprocessing mode		
MIR	file category: MIRAS, as the name of the instrument		
CLF3Sx	C = CATDS		
	L = Product over Land		
	F = for full polarisation		
	3S = Level 3, S stands for simplified, i.e. daily global maps		
	x = "A" for ascending orbit and "D" for descending orbit		
yyyymmddThhmmss	sensing start time for the data contained in the product		
	With yyyy year		
	mm month		
	dd day of the month		
	hh hour		
	mm minutes		
	ss seconds		
VVV	version number of the processor generating the product		
ccc	file counter, used to make distinction among products having all other		
	filename identifiers identical: the higher the file counter, the more		
	recent the product		
n	processing site (C-PDC=7, C-EC SM=8, C-EC OS=9)		

3.3 Where to find these products

3.4 Product content

CESBIO

Table 4: Content of the L3 Brightness Temperatures Product

Variable Name	Description
lat and lon	Geographic coordinates: Vectors of latitudes
	and longitudes (in degree) of the grid point.
	The dimensions of "lat" and "lon" are 584x1 and
	1388x1 respectively, corresponding to the
	584x1388 nodes of the EASE version 2, 25km
	cylindrical grid.
T	The 2 following parameters are presented as a 584x1388 matrix
X_Swath	Abscissa of the dwell line (in km): The sign of the
	value is relative to the direction of the satellite. It is
	positive if it is to the right and negative if it is to the
	left of the satellite subtrack
Days	Measurement acquisition time in UTC at which
UTC_Seconds	the averaged brightness temperature was taken, in
	Day count begins on the 1st of January 2000
	seconds are relative to the current day in UTC
	Continued on next page

SMOS team

SO-TN-CB-CA-0001

Soil_Moisture Soil Moisture (m3/m3)

Soil_Moisture_Dqx SM Data Quality Index, is a measure of the uncertainty due

to SMOS radiometric accuracy

Optical_Thickness_Nad VOD (-) is the τ parameter in the Radiative Transfert Model

Optical_Thickness_Nad_Dqx VOD Data Quality index, is the uncertainty on the derived VOD

due to SMOS radiometric accuracy

Science_Flags is binary sequence describing conditions

Mean_FM0_FNO Fraction of Nominal land cover over SMOS footprint, based on IGBP maps

with the antenna pattern being applied

Mean_FM0_FFO Fraction of Forest land cover over SMOS footprint, based on IGBP maps

with the antenna pattern being applied

Number_Degree_Freedom is the number of degree of freedom used for the retrieval

is the number of TB - number of free parameters

M_Ava is the number of TB (after filtering) used for that orbits

Ratio_RFI is the fraction of contaminated TB for that day

is defined as the some of NRFIX and NRFIY for the 3 orbits devided by the number of initial TB (acquired, i.e before filtering)

Chi_2 Statistic that measure the goodness of the fit

modeled TB with derived SM and VOD versus SMOS TB

Chi_2_P Chi 2 probability

Rfi_Prob RFI probability computed over a 12-day time window

Science Flags

This parameter is coded in 32 bits: the reported value has to be converted to a binary number.

Table 5: Science_Flags

Bit(1 - > (LSB)	Tag Name	Туре
1	FL_Non_Nom	This flag is set to 1 if any of the flags in Bits 3 to 10
		and 12 to 20 in this table is raised
2	FL_Scene_T	This flag is set to 1 when either FL_Non_Nom or
		FL_Nominal is raised
3	FL_Barren	This flag is set to 1 when the radiometric fraction of
		Barren surface is > TH_SCENE_FEB (5.00%)
4	FL_Topo_S	This flag is set to 1 if the radiometric fraction of
		Strong Topography is > TH_SCENE_FTS (5.00%)
5	FL_Topo_M	This flag is set to 1 if the radiometric fraction of
		Moderate Topography is > TH_SCENE_FTM (10.00%)
		Continued on next page

	EL OW	
6	FL_OW	This flag is set to 1 if the radiometric fraction of
		Open Water is > TH_SCENE_FOW (5.00%)
7	FL_Snow_Mix	This flag is set to 1 if the radiometric fraction of
		Mixed Snow is > TH_SCENE_FSN (5.00%)
8	FL_Snow_Wet	This flag is set to 1 if the radiometric fraction of
		Wet Snow is > TH_SCENE_FSW (5.00%)
9	FL_Snow_Dry	This flag is set to 1 if the radiometric fraction of
		Dry Snow is > TH_SCENE_FSD (5.00%)
10	FL_Forest	This flag is set to 1 if the radiometric fraction of
		Forest is > TH_SCENE_FFO (10.00%)
11	FL_Nominal	This flag is set to 1 if the radiometric fraction of
		Nominal is > TH_SCENE_FNO (10.00%)
12	FL_Frost	This flag is set to 1 if the radiometric fraction of
		Frost is > TH_SCENE_FRZ (5.00%)
13	FL_Ice	This flag is set to 1 if the radiometric fraction of
		Total Ice is > TH_SCENE_FTI (5.00%)
14	FL_Wetlands	This flag is set to 1 if the radiometric fraction of
		Wetlands is > TH_SCENE_FWL (5.00%)
15	FL_Flood_Prob	This flag is set to 1 if the sum of the ECMWF value for
		Large_Scale_Precipitation and Convective_Precipitation
		(AUX_ECMWF_) is > threshold TH_FLOOD (20mm/h)
16	FL_Urban_Low	This flag is set to 1 if the radiometric fraction of
		Urban is > TH_SCENE_FUL (10.00%)
17	FL_Urban_High	This flag is set to 1 when the radiometric fraction of
		Urban is > TH_SCENE_FUH (30.00%)
18	FL_Sand	This flag is set to 1 if the mean sand fraction
		is $> TH_Sand (95.00\%)$
		The mean sand fraction is computed as the non-weighted
		average of the sand % from the Soil Properties product
19	FL_Sea_Ice	This flag is set to 1 if the radiometric fraction of Sea Ice
		surface type, which is determined by the sea ice cover of
		the ECMWF database, is > TH_Sea_Ice (20.00%).
20	FL_Coast	This flag is set to 1 when the Wetlands fraction in at
		least one DFFG cell in the working area is above zero and
		the Land Cover Class reports an intertidal area.
21	FL_Occur_T	This flag is set to 1 if any of the FL_Litter, FL_PR,
		or FL_Intercep is raised, indicating the occurrence
		of a special event during the retrieval.
22	FL_Litter	This flag is set to 1 if the mean litter opacity is
		above the threshold TH_TAU_Litter (0.10 neper)
23	FL_PR	This flag is set to 1 if the interception index is
		below the threshold TH_PR (0.026)
24	FL_Intercep	This flag is set to 1 if the ECMWF parameter
	•	Skin_Reservoir_Content (SCR) is > TH_Intercep (0.02)
25	FL_External	This flag is set to 1 if one of the flags
		FL_Rain, FL_TEC is raised or N_Sky > 0
26	FL_Rain	This flag is set to 1 if the sum of the ECMWF parameters
		Large_Scale_Precipitation and Convective_Precipitation
		(LSP and CP) is $>$ TH_RAIN (10.00 mm/h)
27	FL_TEC	This flag is raised if the TEC (Total Electric Constant) content
		Continued on next page
		7 Puge

		of the first snapshot contributing to the brightness temperature measurements to the last retrieval is > TH_TEC (95×10^{16} electrons/m ²). If no retrieval has been attempted then the brightness temperatures are those used to compute MVAL0
28	FL_TAU_FO	This flag is set to 1 if the mean forest opacity
		is > TH_SCENE_TAU_FO (1.0 neper)
29	FL_WINTER_FOREST	Flag indicating that the forest case has been selected
		by the decision tree despite the fact that the mean fraction
		is mainly in the FNO case
30	FL_DUAL_RETR_FNO_FFO	dual retrieval performed on the FNO and FFO fractions
31-32		Two spare bits

4 DAILY SOIL MOISTURE

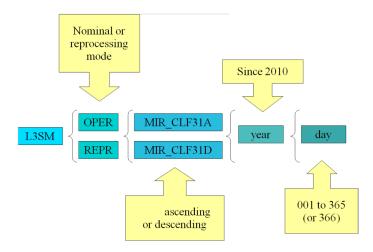
4.1 Product Description

This product is the one day product, and contains filtered data. The best estimation of soil moisture and dielectric constant are selected (based on the minimisation of the DQX) for each node when several multi-orbit retrievals are available for a given day. A detection of particular events is also performed in order to flag the data aggregation of SMOS orbits. Ascending and descending orbits are still processed separately. All the aggregated products (3-day, 10-day and monthly products) are based on these daily maps.

4.2 Naming Convention

All the files are named as follows:

"SM_OPER_MIR_CLF31x_yyyymmddThhmmss_YYYYMMDDTHHMMSS_vvv_ccc_n", where the conventions are very close to those of SMOS Level 2.


Table 6: Naming Description of the Daily SM-VOD Product

SM	in this specific case, it stands for the SMOS mission
OPER	file class: indicates whether the data is produced in a nominal or a
REPR	reprocessing mode
MIR	file category: MIRAS, as the name of the instrument
CLF31x	C = CATDS
	L = Product over Land
	F = for full polarisation
	31 = Level 3, 1 stands for 1 day, i.e. daily global maps
	x = "A" for ascending orbit and "D" for descending orbit
yyyymmddThhmmss	sensing start time for the data contained in the product
	With yyyy year
	mm month
	dd day of the month
	hh hour
	mm minutes
	ss seconds
VVV	version number of the processor generating the product
ccc	file counter, used to make distinction among products having all other
	filename identifiers identical: the higher the file counter, the more
	recent the product
n	processing site (C-PDC=7, C-EC SM=8, C-EC OS=9)

4.3 Where to find these products

These products can be found on the CATDS website (http://catds.fr), organised as follows: SM/GRIDDED/L3SM/OPER/product type/year/day of the year,

where product type can be MIR_CLF31A or MIR_CLF31D depending on orbits type, and day of the year is between 001 (1st January) and 365/366 (31st December).

Product content

Table 7: Content of the L3 Daily SM Product

Variable Name	Description
lat and lon	Geographic coordinates: Vectors of latitudes
	and longitudes (in degree) of the grid point.
	The dimensions of "lat" and "lon" are 584x1 and
	1388x1 respectively, corresponding to the
	584x1388 nodes of the EASE version 2, 25km
	cylindrical grid.
The 2 fc	ollowing parameters are presented as a 584x1388 matrix
Mean_Acq_Time_Days	Time of measurement: Day and second of mean acquisition time
Mean_Acq_Time_Seconds	per DGG node, corresponding to the selected soil moisture value.
	Day count begins on the 1st of January 2000 AD, seconds and
	microseconds are relative to the current day in UTC.
Mean_Acq_Time_Days2	Time of measurement in UTC: Day and the second of mean acquisition time
Mean_Acq_Time_Seconds2	per DGG node, corresponding to the selected dielectric constant value.
-	Day count begins on the 1st of January 2000
	seconds and microseconds are relative to the current day in UTC
Soil_Moisture	is the retrieved soil moisture value (in m ³ /m ³)
Soil_Moisture_Dqx	its associated data quality index (in m ³ /m ³)
Optical_Thickness_Nad	The nadir optical thickness of the vegetation layer (in neper)
-	corresponding to the derived soil moisture values
Optical_Thickness_Nad_Dqx	its associated data quality index
Optical_Thickness_Nad2	The nadir optical thickness of the vegetation layer (in neper)
• = =	corresponding to the derived dielectric constant values
Optical_Thickness_Nad2_Dqx	its associated quality index
Dielectric_Const	Real and imaginary parts of the dielectric constant
Dielectric_Const_Dqx	retrieved from the cardioid model (MD) in Fm ⁻¹ ,
•	and their associated data quality index.

Continued on next page

Dimensions of this parameter are 584x1388x2 (for real and imaginary parts).

Hr Hr_Dqx Retrieved surface roughness parameter its associated data quality index

Scattering_Albedo_H Diff_Albedos

Diff_Albedo Dqx

Surface_Temperature
Surface_Temperature_Dqx

Spare, not retrieved at the moment

Retrieved surface temperature (in Kelvin) its associated quality index corresponding to

the derived soil moisture values.

Temp_STL1
Temp_SKT

ECMWF temperatures used for the 0-7 cm soil layer and the soil surface respectively, corresponding to the derived soil moisture

S_Tree_1

Permanent surface category: This represents the considered retrieval case of the decision tree, i.e. the main surface cover type (see ATBD L2SM)

* Only 11 and 12 are of interest for soil moisture retrieval.

- 1. all open water
- 2. heterogeneous open water
- 3. strong topography pollution
- 4. soft topography pollution
- 5. all wet snow
- 6. all mixed snow
- 7. wet snow pollution
- 8. mixed snow pollution
- 9. all frost
- 10. frost pollution
- 11. forest cover
- 12. soil cover
- 13. all wetlands
- 14. all barren
- 15. all ice
- 16. all urban
- 17. heterogeneous

Tb_Asl_Theta_B_H Tb_Asl_Theta_B_H_Dqx Tb_Asl_Theta_B_V Tb_Asl_Theta_B_V_Dqx Brightness temperature At Surface Level in Kelvin

corrected for sky/atmosphere contribution provided at the Earth reference frame

Computed using the forward model at the specific incidence angle

theta_B of 42.5 °, for H and V polarisations and their associated data quality index.

Tb_Toa_Theta_B_X
Tb_Toa_Theta_B_X_Dqx
Tb_Toa_Theta_B_X

Tb_Toa_Theta_B_Y Tb_Toa_Theta_B_Y_Dqx Brightness temperature at the Top Of the Atmosphere in Kelvin corrected for sky/atmosphere contribution and transferred

to antenna reference frame (X, Y polarisations)

using the Faraday and geometric rotation computed from the forward models

at the specific incidence angle theta_B of 42.5°

and their associated data quality index

Continued on next page

Science_Flags They are the flags associated with the soil moisture value (see table)

This parameter is coded in 32 bits: the reported value has to be converted to

a binary sequence

Fno and Ffo Fractions of nominal (i.e. low vegetation and sand) and forest

as radiometric fractions or each node corresponding to the derived SM.

M_Ava0 Total number of brightness temperature measurements acquired for each nodes

corresponding to the selected soil moisture values.

M_Ava Total number of brightness temperature measurements actually

considered for the retrieval after initial filterings

corresponding to the selected SM.

N_Rfi_X Number of discarded brightness temperatures due to suspected RFI

N_Rfi_Y in the X and Y polarisations

corresponding to the derived soil moisture.

Min_Soil_Moisture As several soil moisture data (and thus data quality indexes) are available Max_Soil_Moisture per node and per day, the minimum and the maximum values are reported

Min_Soil_Moisture_Dqx
Max_Soil_Moisture_Dqx

Soil_Moisture_Init_Val

Soil_Moisture_Init_Std

Initial value and the standard deviation for free parameter soil moisture

corresponding to the derived soil moisture

Global quality indexes associated with the soil moisture values

Gqx2 and the dielectric constant values, respectively.

Event_Flags Flag about event detection: This parameter is coded in 16 bits

using the following convention:

00 Not verified 01 : Possible 10 : Sure

11: Not processed

The first two ones (FL_EV_Frost_Soil) are raised to show the

possible existence of ground frozen,

the 14 other ones are spare bits padded with 0.

that frost has been clearly detected on the ground

Rfi_Prob RFI probability: total number of RFI detected on a large period

divided by the total number of brightness temperature measurements

acquired on the same period.

5 3-DAY SM-VOD PRODUCT

5.1 Product Description

The 3-day global product of soil moisture is an aggregation of daily global maps of soil moisture and its associated parameters over a 3 day moving window. The whole Earth's surface is covered in this 3-day product. This product is based on the best soil moisture retrievals (minimisation of the DQX). The distinction between ascending and descending orbits is kept.

5.2 Naming Convention

All the files are named as follows:

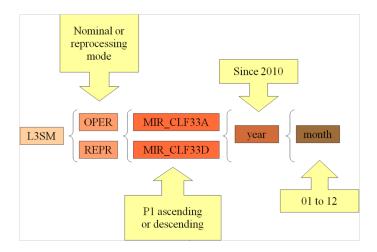

"SM_OPER_MIR_CLF33x_yyyymmddThhmmss_YYYYMMDDTHHMMSS_vvv_ccc_n", where the conventions are very close to those of SMOS Level 2.

Table 8: Naming Description of the 3-day SM-VOD Product

14010	of training Description of the 3 day 5W VOD Houder
SM	in this specific case, it stands for the SMOS mission
OPER	file class: indicates whether the data is produced in a nominal or a
REPR	reprocessing mode
MIR	file category: MIRAS, as the name of the instrument
CLF33x	C = CATDS
	L = Product over Land
	F = for full polarisation
	33 = Level 3, 3 stands for 3-day global maps
	x = "A" for ascending orbit and "D" for descending orbit
yyyymmddThhmmss	sensing start time for the data contained in the product
	With yyyy year
	mm month
	dd day of the month
	hh hour
	mm minutes
	ss seconds
VVV	version number of the processor generating the product
ccc	file counter, used to make distinction among products having all other
	filename identifiers identical: the higher the file counter, the more
	recent the product
n	processing site (C-PDC=7, C-EC SM=8, C-EC OS=9)

5.3 Where to find these products

These products can be found on the CATDS website (http://catds.fr), organised as follows: SM/GRIDDED/L3SM/OPER/product type/year/month, where product type can be MIR_CLF33A or MIR_CLF33D depending on orbits type.

5.4 Product content

Table 9: Content of the 3-Day Product

Variable Name	Description
lat and lon	Geographic coordinates: Vectors of latitudes
	and longitudes (in degree) of the grid point.
	The dimensions of "lat" and "lon" are 584x1 and
	1388x1 respectively, corresponding to the
	584x1388 nodes of the EASE version 2, 25km
	cylindrical grid.
7	The 2 following parameters are presented as a 584x1388 matrix
Nb_Sm	Number of available soil moisture estimates obtained over the 3 day period:
	It could vary from 0 to 3 if the point is successfully retrieved over the 3 days.
Soil_Moisture	Selected soil moisture value for the period:
Soil_Moisture_Dqx	The selected soil moisture value (in m ³ /m ³) with the smallest CHI2 is kept
	between all the values (maximum 3) available during the period for one DGG
	and its associated data quality index.
Nominal_Fraction	Nominal fraction associated with the selected soil moisture values.
Optical_Thickness_Nad Optical_Thickness_Nad_Dqx	Vegetation opacity and its DQX corresponding to the selected SM
Science_Flags	Flags associated with the selected soil moisture values
Event_Flags	Flag about event detection
_	This parameter is coded in 16 bits, using the following convention:
	00 : Not verified
	01 : Possible
	10 : Sure
	11 : Not processed
	The first two ones (FL_EV_Frost_Soil) are raised to show the possible
	existence of ground frozen, and the 14 other ones are spare bits padded with 0
	e.g. "000000000000000000000000000000000" (=2 in a decimal system) means that frost has been
	Continued on n

clearly detected on the ground.

Global quality index associated with the selected soil moisture value.

Mean_Acq_Time_Days

Time of measurement in UTC as Day and second of mean acquisition time, per Do

Mean_Acq_Time_Seconds corresponding to the selected soil moisture value.

Day count begins on the 1st of January 2000

seconds and microseconds are relative to the current day in UTC

Dielectric_Const Real and imaginary parts of the dielectric constant retrieved from the Dielectric_Const_Dqx cardioid model (MD) in Fm⁻¹ and their associated data quality index

The dimensions of this parameter are 584x1388x2 (for real and imaginary parts).

list_of_data_set This is the list of the daily products used in the processing.

6 3-DAY DIELECTRIC CONSTANT PRODUCT

6.1 Product Description

The 3-day global product of the dielectric constant is an aggregation of daily maps of dielectric constant and its associated parameters over 3 days moving window. The whole Earth's surface is covered in this 3-day product. This product is based on the best dielectric constant retrievals (minimisation of the DQX). The distinction between ascending and descending orbits is kept.

6.2 Naming Convention

All the files are named as follows:

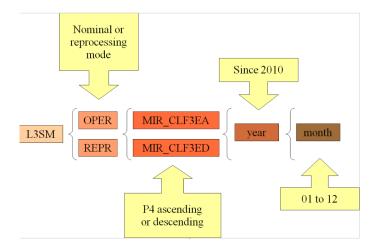

"SM_OPER_MIR_CLF3Ex_yyyymmddThhmmss_YYYYMMDDTHHMMSS_vvv_ccc_n", where the conventions are very close to those of SMOS Level 2.

Table 10: Naming Description of the Daily SM-VOD Product

racte for realising Description of the Daily Stri + 3D frouder		
in this specific case, it stands for the SMOS mission		
file class: indicates whether the data is produced in a nominal or a		
reprocessing mode		
file category: MIRAS, as the name of the instrument		
C = CATDS		
L = Product over Land		
F = for full polarisation		
3E = Level 3, E stands for dielectric, 3-day dielectric constant global maps		
x = "A" for ascending orbit and "D" for descending orbit		
sensing start time for the data contained in the product		
With yyyy year		
mm month		
dd day of the month		
hh hour		
mm minutes		
ss seconds		
version number of the processor generating the product		
file counter, used to make distinction among products having all other		
filename identifiers identical: the higher the file counter, the more		
recent the product		
processing site (C-PDC=7, C-EC SM=8, C-EC OS=9)		

6.3 Where to find these products

These products can be found on the CATDS website (http://catds.fr), organised as follows: SM/GRIDDED/L3SM/OPER/product type/year/month, where product type can be MIR_CLF3EA or MIR_CLF3ED depending on orbits type.

6.4 **Product content**

Table 11: Content of 3-Day Dielectric Constant Product

Variable Name	Description
lat and lon	Geographic coordinates: Vectors of latitudes
	and longitudes (in degree) of the grid point.
	The dimensions of "lat" and "lon" are 584x1 and
	1388x1 respectively, corresponding to the
	584x1388 nodes of the EASE version 2, 25km
	cylindrical grid.
	he 2 following parameters are presented as a 584x1388 matrix
Dielectric_Const	Dielectric constant: Real and imaginary parts of the dielectric constant
Dielectric_Const_Dqx	retrieved from the cardioid model (MD) respectively a non cardioid model
	(Non MD), in Fm^{-1} , and their associated data quality index.
	The dimensions of this parameter are 584x1388x2 (for real and imaginary parts).
	Between all the values (maximum 3) available for one DGG, the value with the
	smallest CHI2 is kept in the 3-day product for Dielectric Constant
	with its associated Dqx.
Dielect_Const_Module	the module of dielectric constant
Dielect_Const_Module_Dqx	the module of Dqx of dielectric constant
Optical_Thickness_Nad	Vegetation opacity: Once the dielectric constant value has been selected
Optical_Thickness_Nad_Dqx	between the available retrievals the associated optical thickness estimated
•	for vegetation layer (in neper)
	and its associated quality index are reported, namely
	Optical_Thickness_Nad2 and Optical_Thickness_Nad_Dqx2
	from the daily product
Mean_Acq_Time_Days	Time of measurement in UTC: Day and second of mean acquisition time, per DG
Mean_Acq_Time_Seconds	corresponding to the selected dielectric constant values.
	Day count begins on the 1st of January 2000
	seconds and microseconds are relative to the current day in UTC
Event_Flags	Flag about event detection
	Continued on ne.

This parameter is coded in 16 bits, using the following convention:

00: Not verified

01 : Possible

10 : Sure

11: Not processed

 $list_of_data_set$

This is the list of the daily products used in the processing.

7 10-DAY PRODUCT

7.1 Product Description

The 10-day global product is a 10-days aggregation of daily global maps. Three products are obtained per month whereof the last one has a duration of 8 to 11 days. Each product contains the median, minimum and maximum values of soil moisture and its associated parameters over the 10 days. The distinction between ascending and descending orbits is kept.

7.2 Naming Convention

All the files are named as follows:

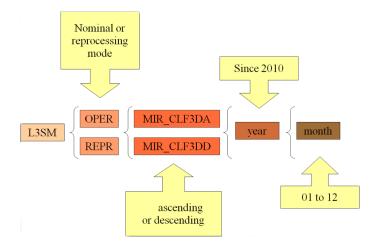

"SM_OPER_MIR_CLF3Dx_yyyymmddThhmmss_YYYYMMDDTHHMMSS_vvv_ccc_n", where the conventions are very close to those of SMOS Level 2.

Table 12: Naming Description of the Daily SM-VOD Product

	\mathcal{C} 1
SM	in this specific case, it stands for the SMOS mission
OPER	file class: indicates whether the data is produced in a nominal or a
REPR	reprocessing mode
MIR	file category: MIRAS, as the name of the instrument
CLF3Dx	C = CATDS
	L = Product over Land
	F = for full polarisation
	3D = Level 3, D stands for 10-days global maps
	x = "A" for ascending orbit and "D" for descending orbit
yyyymmddThhmmss	sensing start time for the data contained in the product
	With yyyy year
	mm month
	dd day of the month
	hh hour
	mm minutes
	ss seconds
VVV	version number of the processor generating the product
ccc	file counter, used to make distinction among products having all other
	filename identifiers identical: the higher the file counter, the more
	recent the product
n	processing site (C-PDC=7, C-EC SM=8, C-EC OS=9)

7.3 Where to find these products

These products can be found on the CATDS website (http://catds.fr), organised as follows: SM/GRIDDED/L3SM/OPER/product type/year/month, where product type can be MIR_CLF3DA or MIR_CLF3DD depending on orbits type.

7.4 **Product content**

Table 13: Content of the 10-day SM-VOD Product

	·
Variable Name	Description
lat and lon	Geographic coordinates: Vectors of latitudes
	and longitudes (in degree) of the grid point.
	The dimensions of "lat" and "lon" are 584x1 and
	1388x1 respectively, corresponding to the
	584x1388 nodes of the EASE version 2, 25km
	cylindrical grid.
The 2 j	following parameters are presented as a 584x1388 matrix
Nb_Sm	Number of available soil moisture estimates obtained over the 10-day period
	It could vary from 0 to 11 (last 10 days can be 8 to 11 days)
	if the point is successfully retrieved for the 10 days
Gqx	This is the global quality index
All th	e following parameters have 3 dimensions: 584x1388x3
$(med_min_max =$	3) corresponding to the median, the minimum, and the maximum SM
	obtained over the 10-day period.
Soil_Moisture	This is the medain, minimum and maximum value of soil moisture (in $m^3 ext{.m}^{-3}$)
Soil_Moisture_Dqx	retrieved over the 10 days, and its associated data quality index.
Mean_Acq_Time_Days	Time of measurement Day and second of mean acquisition time, per DGG node
Mean_Acq_Time_Seconds	Day count begins on the 1st of January 2000
	seconds and microseconds are relative to the current day in UTC
Optical_Thickness_Nad	nadir optical thickness estimate for vegetation layer (in neper)
Optical_Thickness_Nad_Dqx	its associated data quality index
Hr	the retrieved roughness
Hr_Dqx	its associated quality index
Scattering_Albedo_H Diff_Albedos	Spare, not retrieved at the moment

Continued on next page

Dqx

Nominal_Fraction Fraction of nominal surface

Science_Flags They are the flags associated with the median, the minimum and the maximum values of SM

list_of_data_set This is the list of the daily products used in the processing.

8 MONTHLY PRODUCT

8.1 Product Description

The monthly global product of soil moisture is a monthly average of daily global maps. It provides a mean retrieved soil moisture weighted by their accuracy (DQX), vegetation optical thickness (separated for lower vegetation and forest), RFI statistics over a month, without taking into account estimations affected by detected event (only frost for the moment) in the daily product. It can be useful for climate monitoring. The distinction between ascending and descending orbits is kept.

8.2 Naming Convention

All the files are named as follows:

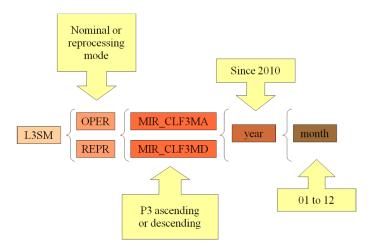

"SM_OPER_MIR_CLF3Mx_yyyymmddThhmmss_YYYYMMDDTHHMMSS_vvv_ccc_n", where the conventions are very close to those of SMOS Level 2.

Table 14: Naming Description of the Monthly SM-VOD Product

Table 14. Naming Description of the Wonting SW VOD Houdet	
SM	in this specific case, it stands for the SMOS mission
OPER	file class: indicates whether the data is produced in a nominal or a
REPR	reprocessing mode
MIR	file category: MIRAS, as the name of the instrument
CLF3Mx	C = CATDS
	L = Product over Land
	F = for full polarisation
	3M = Level 3, M stands for Monthly global maps
	x = "A" for ascending orbit and "D" for descending orbit
yyyymmddThhmmss	sensing start time for the data contained in the product
	With yyyy year
	mm month
	dd day of the month
	hh hour
	mm minutes
	ss seconds
VVV	version number of the processor generating the product
ccc	file counter, used to make distinction among products having all other
	filename identifiers identical: the higher the file counter, the more
	recent the product
n	processing site (C-PDC=7, C-EC SM=8, C-EC OS=9)

8.3 Where to find these products

These products can be found on the CATDS website (http://catds.fr), organised as follows: SM/GRIDDED/L3SM/OPER/product type/year/month, where product type can be MIR_CLF3MA or MIR_CLF3MD depending on orbits type.

8.4 Product content

Table 15: Content of the monthly SM-VOD Product

Variable Name	Description
lat and lon	Geographic coordinates: Vectors of latitudes
	and longitudes (in degree) of the grid point.
	The dimensions of "lat" and "lon" are 584x1 and
	1388x1 respectively, corresponding to the
	584x1388 nodes of the EASE version 2, 25km
	cylindrical grid.
The 2 j	following parameters are presented as a 584x1388 matrix
Nb_Sm	Number of available soil moisture estimates obtained over the month
	It could vary from 0 to the number of days in the considered month if the point is successfully retrieved over the month.
Soil_Moisture	Monthly mean soil moisture value (in m ³ /m ³) weighted by DQX
Soil_Moisture_Dqx	which does not take into account the estimations affected by an event
Var_Soil_Moisture	in the daily product. It corresponds only to data whose Event_Flags is $= 0$
	its associated quadratic mean quality index and variance.
Optical_Thickness_Lv	Monthly mean nadir optical thickness value weighted by DQX
Optical_Thickness_Lv_Dqx	for lower vegetation (in neper) which does not take into account the estimations
Var_Optical_Thickness_Lv	affected by an event in the daily product,
	its associated quadratic mean quality index and variance.
Optical_Thickness_Fo	Monthly mean nadir optical thickness value weighted by DQX
Optical_Thickness_Fo_Dqx	for forest vegetation (in neper) which does not take into account the estimations
Var_Optical_Thickness_Fo	affected by an event in the daily product,
-	its associated quadratic mean quality index and variance.
Nominal_Fraction	Mean nominal and forest fractions when the model is nominal or forest
Forest_Fraction	Mean is weighted by the soil moisture dqx value
Gqx	Mean global quality index where soil moisture is available

Continued on next page

Rfi_X_Frac Fractions of SMOS TB measurements contaminated by RFI Rfi_Y_Frac in X and Y polarisations

list_of_data_set List of the daily products used in the processing

9 Description of FLAGS

9.1 Grid_Point_Mask

USGS Sea Flag:

[X X X X : X X X 0] means that the pixel is not considered Sea in the USGS Land-Sea mask (water fraction below 95%)

[$X\ X\ X\ X\ X\ 1$] means that the pixel is considered Sea in the USGS Land-Sea mask (water fraction above 95%)

USGS Land Flag:

[X X X X : X X 0 X] means that the pixel is not considered Land in the USGS Land-Sea mask (water fraction above 10%)

[X X X X : X X 1 X] means that the pixel is considered Land in the USGS Land-Sea mask (water fraction below 10%)

USGS Mixed Flag:

[X X X X : X 1 X X] means that the pixel is considered Mixed in the USGS Land-Sea mask (water fraction above 10% AND below 95%)

200km Coastal flag:

[X X X X : 0 X X X] means that the pixel has a distance from the coast of more than 200 Km (using the MERIS uncertainty map with its coasts extended to 200km)

[X X X X : 1 X X X] means that the pixel has a distance from the coast of less than 200 Km (using the MERIS uncertainty map with its coasts extended to 200km)

100km Coastal flag:

[X X X 0 : X X X X] means that the pixel has a distance from the coast of more than 100 Km (using the MERIS uncertainty map with its coasts extended to 100km)

[XXX1:XXX] means that the pixel has a distance from the coast of less than 100 Km (using the MERIS uncertainty map with its coasts extended to 100km)

40km Coastal flag:

[X X 0 X : X X X X] means that the pixel has a distance from the coast of more than 40 Km (using the MERIS uncertainty map with its coasts extended to 40km)

[X X 1 X : X X X X] means that the pixel has a distance from the coast of less than 40 Km (using the MERIS uncertainty map with its coasts extended to 40km)

Min Sea-Ice flag:

 $[\ X\ 0\ X\ X: X\ X\ X\]$ means that the pixel does not have the full 12 months bit ICE set in the ice mask defined in the L2 AUX_DISTAN ADF

[X 1 X X : X X X X] means that the pixel have the full 12 months bit ICE set in the ice mask defined in the L2 AUX DISTAN ADF

Max Sea-Ice flag:

[0 X X X : X X X] means that the pixel does not have any 12 months bit ICE set in the ice mask

defined in the L2 AUX_DISTAN ADF

[1~X~X~X:X~X~X] means that the pixel does have any 12 months bit ICE set in the ice mask defined in the L2 AUX_DISTAN ADF